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Generation of sub-wavelength and super-resolution

longitudinally polarized non-diffraction beam

using lens axicon
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It is well known that a light spot of sub-wavelength will diverge in all directions. In this letter, A method is
presented for generating sub-wavelength (0.44λ) longitudinally polarized beam, which propagates without
divergence over lengths of about 2λ in free space. This is achieved by a high numerical aperture (NA)
lens axicon that utilizes spherical aberration to duplicate the performance of an axicon and to create an
extended focal line.
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Most of the near field applications such as optical
data storage, biomedical imaging, and lithography de-
mands sub-wavelength beam with large depth of fo-
cus. Overcoming the limits imposed by diffraction has
been the aim of many research during the last decades.
The super resolution was extensively investigated us-
ing amplitude apertures[1,2], phase apertures[2], or their
combination[3,4]. It was observed that a strong longitu-
dinal component appears at the focal region of a tightly
focused laser beam[5−7]. It also arises with focusing of
radially polarized light[8−10]. The longitudinal field can
be suppressed or enhanced by amplitude, polarization,
and phase modulations of the incident beam. For exam-
ple, a longitudinal field can be completely suppressed in
an azimuthally polarized beam[10,11]. Several methods
to enhance the longitudinal field component have been
suggested[12,13], however all of them have insufficient op-
tical efficiency (on the level of a few percents) and non-
uniform axial field strength. An axicon is an optical ele-
ment generating a narrow focal line along the optical axis.
The axicon, energy wise, is the most efficient method for
generating a diffraction free beam. The focal line gener-
ated by the axicon can be approximated by a zero-order
Bessel-type beam that preserves its transverse distribu-
tion along the axis. The idea of using spherical aberration
to produce an axicon from ordinary lenses was first sug-
gested by Steel in 1960[14]. It has been thoroughly inves-
tigated both analytically and numerically[15−17]. How-
ever, this analysis only specifies the focal length and the
amount of spherical aberration required. The experimen-
tal aspect of designing the lens axicon was investigated in
Ref. [18]. The advantage of such a system is that spher-
ical surfaces can be routinely produced in any optical
workshop, so the lens axicon is easy and inexpensive to
manufacture. A possible design, presented in this letter,
is a cemented doublet-lens axicon, where the virtual fo-
cal segment created by the aberrated diverging lens can
be converted to a real focal segment, of the forward type
with a nano-scale resolution, by adding a high numerical
aperture (NA) converging lens. In addition, we consider
only the systems that comprise a third-order spherical

aberration diverging lens and a perfect high-NA converg-
ing lens illuminated by a radially polarized beam. The
schematic diagram of the lens axicon is shown in Fig. 1. It
is shown that for radially polarized incidenting, a Fresnel
zone plate (FZP) is superior to a high NA lens in focusing
properties[19]. This is due to a large apodization factor
of FZP for high NA, which gives larger weight to higher
spatial components. Owing to the phase nature of FZP,
the resolution is improved without reduction in intensity.
However, compared with FZP, the proposed lens axicon
system is simple to fabricate, mount, and align. The
analysis was performed on Richards and Wolf’s vectorial
diffraction method[20] which was widely used for high-NA
focusing systems at arbitrary polarized incidenting[21,22].
In the case of the radially polarized incidenting, adopting
the cylindrical coordinates r, z and the notations used in
Ref. [23], radial and longitudinal components of the elec-
tric field Er(r, z) and Ez(r, z) in the vicinity of the focal
spot can be written as

Er(r, z) = A

α2
∫

α1

cos1/2 (θ) sin(2θ) × l(θ)

×J1(kr sin θ)eikz cos θdθ,

Ez(r, z) = 2iA

α2
∫

α1

cos1/2 (θ) sin2 (θ) × l(θ)

×J0(kr sin θ)eikz cos θdθ, (1)

where α1 distinguishes the presence or absence of annu-
lus, α2 = arcsin(NA/n), and n is the index of refraction
between the lens and the sample. J0(x) and J1(x) denote
Bessel functions of the zero and first order. Function l(θ)
describes amplitude modulation. For illumination by a
Bessel-Gaussian beam with its waist in the pupil this
function is given by
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Fig. 1. Schematic diagram of a lens axicon.

Fig. 2. Intensity profiles of the radial component, longitudi-
nal component, and the total field on the focal plane of the
NA = 0.90 lens for radial polarized (a) plane, (c) Gaussian,
and (e) Bessel-Gaussian beam. (b), (d), and (f) are their
corresponding contour plots of total intensity.
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for a Gaussian beam with its waist in the pupil

l(θ) = exp
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, (3)

and for the plane beam l(θ) = 1. ξ1, ξ2, ξ3 are the param-
eters that denote the ratio of the pupil diameter to the
beam diameter, and in our calculation, we take them as
unity. We perform the integration numerically by using
parameters λ = 405 nm, NA = 0.90 (α2 = 64.15), and
n = 1. The corresponding field distribution is shown in
Fig. 2. From Figs. 2(a), (c), and (e), it is observed that
the intensities of longitudinal components are high for all

three types of beam illumination, but the parasite radial
field intensities are about 36.3%, 43.6%, and 39.2% corre-
sponding to plane, Gaussian, and Bessel-Gaussian beam.
This radial field leads to a broadening of the total in-
tensity distribution. As a result, the total intensity spot
sizes become 0.83λ, 0.98λ, and 0.88λ corresponding to
plane, Gaussian, and Bessel-Gaussian illumination. It is
observed that the full-width at half-maximum (FWHM)
is the smallest in the case of uniform amplitude profile,
while the Gaussian beam results in the largest FWHM.
Moreover, the contour plots of the total intensity distri-
bution in yz plane in Figs. 2(b), (d), and (f) show that the
field changes from a converging spherical wavefront to a
diverging wavefront within a very short distance (∼ λ).
Thus to have a good longitudinally polarized beam with
better depth of focus, one should suppress the radial field
component. We show that it is possible in lens axicon to
make a doublet of aberrated diverging lens and a high-
NA converging lens. The intensity distribution of the
lens axicon is evaluated by replacing the function l(θ)
by the function l(θ)T (θ), where T (θ) is the non paraxial
transmittance function of the thin aberrated diverging
lens

T (θ) = exp

(
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))

,

(4)

where k = 2π/λ, f is the focal length, and β is the aber-
ration coefficient. In our calculation, we take f = 18.4
mm, β = 6.667 × 10−5 mm−3, and n = 1.5. This re-
sults in an equiconcave diverging lens which is simple to

Fig. 3. Intensity profiles of the radial component, longitudi-
nal component, and the total field on the focal plane of the
lens axicon for radial polarized (a) plane, (c) Gaussian, and
(e) Bessel-Gaussian beam. (b), (d), and (f) are their corre-
sponding contour plots of total intensity.
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manufacture[15]. The focal distribution of the lens axicon
is calculated by including the transmission function of the
aberrated diverging lens on the aperture of the high-NA
focusing lens. The intensity profiles of the radial compo-
nent, the longitudinal component, and the total field of
the longitudinally polarized beam in the focal cross sec-
tion are shown in Fig. 3. It is observed that the parasite
radial field intensities are reduced to 15.3%, 16%, and
15.6% and the spot sizes are 0.43λ, 0.44λ, and 0.43λ,
corresponding to plane, Gaussian and Bessel-Gaussian
beam, respectively. The intensity contour plots shown in
Figs. 3(b), (d), and (f) depict that the spot sizes are con-
stant within certain region, implying that the diffractive
spreading is eliminated and a non-diffractive beam prop-
agates in this region. The non-diffractive region extends
to 2λ, 2λ, and 1.8λ corresponding to plane, Gaussian,
and Bessel-Gaussian beam. Outside the region where
the axial intensity is constant, the field diverges almost
as fast as it does in the original system.

In conclusion, a method to obtain a sub-wavelength and
super-resolution longitudinally polarized non-diffracting
beam within a limited space is proposed and demon-
strated numerically. This is achieved by placing a di-
verging aberrated lens in front of a high-NA converging
lens. The method of our calculation is based on vector
diffraction theory, which is suitable to be used in both
paraxial and non-paraxial focusing and imaging system.
We expect such a beam with small spot size and long
depth of focus can be widely used in application such
as data storage, biomedical imaging, laser drilling, and
machining.
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